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It is shown that all critical exponents, with the exception of the heat capacity 
exponent other than for the mean field theory, can be derived from the character- 
istic exponent of an extreme value distribution for the smallest value and the 
dimensionality of the space. The relation between the characteristic exponent and 
the dimensionality d of the space imposes the condition d_<4. This is borne out 
by direct evaluation of the spatial correlation function. 

1. E X T R E M E  VALUE D I S T R I B U T I O N S  

In contrast to the usual thermodynamic situation, where there is an 
overwhelming tendency to cluster about  mean values as the number of  ran- 
dom variables increases without limit, other types of  phenomena tend to be 
governed by their distribution of extreme values. Well-known examples are 
natural disasters (e.g., floods, which follow double exponential distributions 
for largest values), the breaking strength of materials (described by the 
Weibull distribution for smallest values), the distribution of incomes and 
word frequencies (inverse power laws known as the Pare to-Zipf  distribu- 
tion), and the statistics of  evolutionary processes. All these phenomena are 
governed by what L~vy termed stable laws, which, while possessing a domain 
of attraction like that of  the normal distribution, do not possess finite second 
moments. Stable laws have had relatively little impact in the physical 
sciences, apart  from the appearance of the Cauchy distribution in the study 
of  spectral line shapes, where it is known as the Lorentz distribution. The aim 
of  this paper  is to call attention to the fact that stable laws are responsible for 
the scaling laws in the study of  critical phenomena.  
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We will be interested in the minimum value 

2(, = min(X1, X2 . . . . .  X,,) 

of  a set o fn  independent and identically distributed observations or measure- 
ments. This is because we are, in effect, appealing to the principle that the 
"weakest link determines the strength of the chain." Because X,,_> x means 
that each Xi>_x and because they are independent and identically distributed 
random variables with a common distribution function F(x), it follows that 

1 - Pr{X,,> x} : 1 - [ 1  - F(x)]" 

= l - I 1  nl~x)]" 

1 --e -nF(x) (1) 

Since for asymptotically large values of  n the extremes increase, in 
absolute value, without bound, we know that there cannot be any asymptotic 
distribution without normalization, just as in the case of  the central limit 
theorem. This is guaranteed by the property of  stability for which it is 
necessary and sufficient that the distribution defined by nF(x) belongs to the 
same family as that defined by F(x). This requires that it differ by a positive 
scale factor ,~ (n) such that nF(x) = F(,~ (n)x). Now, if we consider two inte- 
gers nj and n2, it follows that (de Finetti, 1975, p. 99) 

nln2F(x) = F(,~ (nl))~ (n2)x) = F(X (nlnz)x) 

from which it follows that 2~ (n~)~ (n2)= ~ (nw2). This functional relation is 
characteristic of  powers, so we have 7~ (n) = n J/k, where k is referred to as the 
characteristic exponent. Therefore, we have 

nF( x) = F(n' /k x) = F(m) = ( m l k (2) 
\too~ 

where m0 is a constant scale factor, independent of  n. 2 The expression for 
the initial distribution (2) can be looked upon as the ratio of  the volume of 
a hypersphere of  k dimensions occupied by the system, m k, to that of  the 
total volume of a hypersphere of  n dimensions, mo k, available to the system. 

2This derivation of the Weibull distribution differs from the usual derivation found in most 
texts (see, for example, Galambos, 1978, pp. 189-191), which begins with the distribution for 
the largest value and uses the symmetry between the distributions of the largest and smallest 
values. Rather, it is more in line with the usual derivation of the microcanonical ensemble 
whose unnormalized distribution is proportional to the volume of phase space occupied by 
the system (Khinchin, 1949, pp. 29ff.). 
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Hence, introducing (2) into (1), we obtain 

Pr{/Q_<m} = 1 - e - ~ 1 7 6  (3) 

which is known in engineering circles as the Weibull distribution, after the 
Swedish engineer who used it for the first time in the analysis of the breaking 
strength of materials (Gumbel, 1958, p. 279). 

2. T H E R M O D Y N A M I C S  O F  R A R E  E V E N T S  

The connection with thermodynamics is obtained by noting that the tail 
of the asymptotic distribution (3) can be derived from the relation 

-n \I-~o/ 3 (4) 

in the limit as n ~ oe. According to the generalized Boltzmann relation for 
asymptotic distributions of smallest values, the entropy reduction due to a 
finite value of m, which behaves as an order parameter, is (Lavenda and 
Florio, 1992) 

- - ( 5 )  
H 

in units where Boltzmann's constant is unity, where So is the entropy of the 
reference state m=0 .  This expression is comparable with the asymptotic 
form of the expression for the "entropy of mixing" for all probability distri- 
butions in the domain of attraction of the normal law. 

Differentiating (5), we get 

k a  k j 
S ' (a )  = k (6) 

1 - n - ~ o  - 

w h e r e  we introduced the reduced variable or-  m/mo.  But, by the second law, 
this must be equal to 

0S •S , 

where E is the internal energy. Equating the two expressions for the entropy 
derivative (6) and (7), we find 

ko -k- ~ T 
h = E ' +  (8) 

1 - - n - l o  "k 

where h = -T(OS/Ocr)e  is the reduced magnetic field. 
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In  order to determine the form of  the energy difference AE we observe 
that  the change in the Helmhol tz  potential is 

AA(cr, T ) - A E - T A S = A E - n T I n ( 1 - ~ - ~ )  (9) 

I t  is easily seen that  (OA/&r)r = h is equivalent to (8), which determines a 
nonvanishing value o f  the order  parameter.  

The bifurcation point  separating zero f rom nonzero  values o f  the mag-  
netization is determined by the vanishing of  the kth-order  derivative o f  the 
Helmhol tz  potential,  viz., 

A~k)(0, T~)=E(k~+k! T~=0 (10) 

where Tc is the critical temperature.  This implies that  the energy difference 
must  have the form 

AE= - Tccr ~ (11) 

implying that  AE must  necessarily be a concave function o f  cr (Lavenda,  
1991, p. 324). 3 Hence, only for extreme value distributions can a phase transi- 
tion of  order k occur in which k > 2. 

Another ,  yet equivalent way  of  looking at (7) with E '  given by the 
derivative o f  (11) is to consider tha t  the total field, equal to the thermo-  
dynamic  force, 

X = h - E ' ( c r )  (12) 

given by the sum of  an external magnetic  field h and an internal field E ' - -  
_2~k~rk-1 created by the interactions among  the spins, where ~ is the mol- 
ecular field parameter ,  which turns out to be propor t iona l  to the critical 
temperature (Stanley, 1971). For  k = 2, it reduces to the mean field approxi-  
mat ion governed by the normal  law, while for k >  2 there is an enhance-  
ment  o f  the molecular  interactions which are governed by extreme value 
distributions. 

3Herein lies the difference from phase transitions that are derived from entropies of mixing 
belonging to either the negative binomial or binomial distribution. According to the central 
limit theorem, these distributions merge into the Gaussian distribution in the limit, so that a 
Taylor series starts with quadratic terms and hence the order of the derivative in (I0) is k = 
2. This corresponds to mean field theory. But because we are dealing with extreme value 
distributions for the smallest value, the smallest order terms in the series expansion of the 
logarithm will start with terms that are of order k > 2. Therefore, a qualification in Lavenda 
(1991, p. 324) must be made in which there are no higher than second-order phase transitions 
in any system that is governed by a probability distribution which is attracted to the normal 
law. 
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In the absence of  an external field, (8) has a nontrivial solution: 

~ro= (nlel) 1/l" (13) 

for T<Z, where the dimensionless temperature variable e=(T-Tc ) /T~ .  
In contrast with the mean field theory, where the square of the zero-field 
magnetization vanishes linearly with the temperature difference I~1, equation 
(13) predicts that the magnetization raised to the power k will vanish in the 
same manner. 

We have shown (Lavenda and Florio, 1992) that this characteristic 
exponent is related to the characteristic exponent of stable laws ,9 in the 
interval 1 < 0 < 2 according to 

k = O / ( O - 1 )  

imptying that 2 <_k < oo. The limit where the normal distribution is attained 
is # =2,  which is included, while the Cauchy limit, corresponding to 
0 = 1, requires a separate analysis. We shall now show that all the critical 
exponents can be derived from the characteristic exponent k of the Weibull 
distribution (3). 

3. CRITICAL EXPONENTS 

3.1. Critical Isotherm Exponent 

The critical isotherm expbnent 6 is defined at the critical temperature 
as h ~ o -~, where ~ means singuiar part of. From (8) we get h ~ o ~2~ ~ identi- 
fying 6 as 

0 + 1  
~ = 2 k -  1 - 

0 - 1  

and therefore 

3 < ~ < o o  

3.2. Magnetization Exponent ,fl 

The zero-field magnetization introduces the critical exponent /3 as 
a~[~[  ~. Setting h=O in (8), we get o-~lc] ~/~ with the consequence that 

/~= l / k =  (0 - 1)/0 

This implies that the range of/3 is 

0</3<1/2 
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3.3. Susceptibility Exponent y 

The inverse isothermal susceptibility is defined as Zrl=(~gh/Ocr)r.  
Below the critical temperature, it scales as Z r l ~  [tl ~. From (8) we find the 
inverse isothermal susceptibility, evaluated at h = 0, as 

(kTc) 2 I)Ik ZSr 1 =n <~-z)l#~ I~12(k- (14) 
T 

implying that 

7I = 2(k - 1 ) / k  = 2/,9 

Hence, the range of values for this critical exponent is 

1 < } , < 2  

3.4. Specific Heat Exponent a 

The specific heat exponent a, defined by Cs,~ Is] -~, can most easily be 
obtained by introducing (13) into the entropy reduction (5) to obtain 

A S = n  l n ( ~ )  (15) 

which has the same form as the entropy difference of an ideal gas when n is 
identified as half the number of degrees of freedom. Below the critical point, 
the entropy change is always negative. Differentiating with respect to T 
yields 

tOT/h 

and consequently 

a = 0  (17) 

which is also a mean field result. 
How this comes about can be seen from the relation 

_,  (c~o'~ ~ 

From (9) and the definition of the heat capacity at constant magnetization, 
C,,, = -  T(O2A/~?T2),,~ = 0, for all T. This is the same as the mean field theory. 
At zero field we find from (13) 

\CT/h 
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the square of  whose exponent is the negative of 7. Hence, we obtain (17) 
and (16). 

3.5. Spatial  Correlation Exponents v and q 

So far we have only introduced critical exponents that are related to 
purely thermodynamic quantities. However, there are two other critical 
exponents which are related to spatial correlations. The first is defined by 

where ~ is the correlation length. The second is defined in terms of the 
correlation function G(r) at the critical point: 

G c ( r )  ~ r -Cd-  2 + ,~ ( 1 8 )  

where d is the dimensionality of the system. This exponent was introduced 
by Fisher (1967) to take into account the slight concavity of  the curves in 
the plot of  the inverse scattering intensity versus the square of the modulus 
of  the momentum transfer vector. Since extreme value distributions describe 
ideal behavior, we must set q-=0 as in the classical theory. The usual scaling 
argument that G~. ~ I el v~d- 2}, which has the same dimension as the variance 
(AO')2=TZT/V~~-J[,~[-r~IF.[ vcl-r in a volume of size V ~ ,  4 yields the 
classical result 2 v =  7, and hence 

v = ( k -  1 ) / k  = 1/O (19) 

Expression (19) identifies the critical exponent v with the inverse of the 
characteristic exponent and with a range 

1 ~ < v < l  

Since we also have (Act) 2~ I~12', we obtain v d -  7 = 2/3, which is a combina- 
tion of  the Rushbrooke and Josephson scaling laws. This identifies the 
dimensionality as twice the characteristic exponent '  

d = 2 k / ( k -  1) = 2~9 (20) 

1 �9 The classical predictions 7 = 1 and v =~ imply that k = 2 ,  which identifies 
the extreme value distribution as the Rayleigh distribution, and from (20), 
it fixes the dimensionality d=4 .  This is its maximum value since 1 <,9 _<2. 

We recall that if two random variables are independent and normally 
distributed, then their length is a random variable having a Rayleigh density. 

4We are assuming, as is commonly done, that the correlation length, or some multiple of it, 
determines a "sufficiently" large volume. This is the weak link in the argument that makes the 
results (19) and (20) less general than those previously obtained. 
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The scale factor is now the standard deviation, which varies as the square 
root of n, the number of independent and identically distributed random 
variables. Since the mean value is proportional to n, the relative fluctuation, 
which is the ratio of the mean value to the standard deviation, decays as 
1/~/n, as n increases without bound and we obtain the usual thermodynamic 
situation where there is a tendency to cluster about the mean value in this 
limit. This is not true for stable distributions with 0 <2, since they have 
infinite variance. 

In general, the mean field exponents do not satisfy Josephson's law, 
since they are independent of the dimensionality of the space (Huang, 1987, 
p. 425), so (20) is not a necessary consequence because Josephson's law has 
gone into its derivation. Nevertheless, for k = 2 ,  the Rayleigh distribution 
results and it is this distribution which governs the fluctuations about the 
mean field quantities. Moreover, if d=4 ,  then we get the "ideal limit," 
exactly as in the case of a polymer chain in 4 dimensions (de Gennes, 1979). 
For an ideal chain in 4 dimensions, the maximum repulsive energy becomes 
independent of the number of monomer units, so that excluded-volume 
effects become negligible. In analogy to the ratio of the maximum repulsive 
energy to the elastic energy of a polymer chain, we take the ratio 

of the correlation function at the critical point, (18), to the variance of the 
limiting Rayleigh distribution, (Ao-) 2 ~ 4 -2, as a measure of the strength of 
the fluctuations. For d=  4, the ratio is independent of the correlation length 
and there is no divergence in the limit as ~ ~ m. The system behaves ideally, 
even in the critical region. 

To prove that the maximum dimension is, indeed, din,• = 4, we consider 
the ratio of the observed scattering intensity I(q) to the ideal, low-density 
scattering intensity lo(q), where q is the magnitude of the momentum transfer 
vector; this ratio is usually assumed to be given by the Lorentzian form 
(Fisher, 1967) 

I(q) 1 
S(q)  = Io(q) oc tc 2 + q2 (21) 

at least away from the critical point. This expression defines the structure 
factor S(q), where ~: = ~-~. The Fourier transform of (21) in d dimensions 
gives the correlation function G(r) (Stanley, 1971) 

io io ; G(r) = S(q)  eiq . . . .  * sin a-2 ~ dr  d~a-1  qa-J dq 
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where df~a-~ is an element of solid angle in d - 1  dimensions. Apart from 
the numerical factors, the correlation function is given by the expression 

~0 c~ G(r) oc S(q) 

_ 1 fo ~176 r d -  2 

Ja/2-, (q~') qa-, dq 
(qr)d/2-1 

x~/2J,,/2_ ,(x) dx 
( K - r ) 2 + x  2 

__ 1 ( K r ) a / 2 _ l K d / 2 _ l ( l q r )  
r d -  2 

(22) 

provided d<  5 (Gradshteyn and Ryzhik, 1980, formula 6.566-2), where J~ is 
a Bessel function of the first kind and K~ is a Basset function. Although the 
result is well known, its limitation to dimensions less than 5 has gone un- 
noticed, or at least it has not been sufficiently emphasized because authors 
refer to d dimensions in a completely arbitrary fashion (de Gennes, 1979). 
As r--* 0% we obtain 

" "  r ~-''~K(a-3)/2 f (d/2)2-d+3 } 
G ( r ) o c ~  e -~" 1 4 4-- - �9 (23) 

L 2~cr 

It is quite remarkable that for the special case d=  3, all correction terms 
cancel and we get precisely the Ornstein-Zernike result 

e-~r 
G(r) oc 

r 

However, it should be observed that (23) is valid provided d<4.  

4. SCALING RELATIONS AND NUMERICAL VALUES 

Apart from a and q, which in some way relate to deviations from 
extreme value distributions, the scaling laws for the critical exponents result 
in mere identities since each critical exponent can be expressed in terms of 
a single parameter--the characteristic exponent of the extreme value distri- 
bution. For instance, the Widom scaling law 7 = f l ( 8 - 1 )  is none other 
than the identity 2/3 = 2/,9. The Rushbrooke equality a + 2fl + 7/= 2 simply 
reduces to 2/k + 2 ( k -  l ) /k  = 2, which is a consequence of the magnetization 
law in zero field, (13), and the expression for the isothermal susceptibility, 
(14). These expressions cannot be tampered with without modifying the 
entire structure of the definitions of the critical point and the scaling 
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Table I. 

Lavenda and Florio 

Comparison of Our Results Based on the Value of the Characteristic Exponent and 
the Critical Exponents for Various Models" 

System 6(T= To) k fl ~, a v 

Experimental range 4-5 - -  0.32-0.39 1.3-1.4 0-0.14 0.6-0.7 
Predicted range 3-oo - -  0 0.5 1-2 0 0.5-1 

1 I Classical 3 2 ~ 1 0 (disc) 
Ising, d=2 15 8 ~ 7 0 (log) 7(l) 
Ising, d=3 5 3 ~ (0.31) ~- (1.25) 0(0.12) ~ (0.64) 
Heisenberg, d= 3 - -  3 ~ (0.3) ~ (1.4) 0 (-0.14) ~ (0.7) 

~Experimental range indicates experimental values taken from a variety of systems after 
Patashinskii and Pokrovskii (1973, Table 3, pp. 42-43). Predicted range is the range we have 
predicted from the characteristic exponent of the extreme value distribution. 

exponents. Hence, systems with a nonvanishing a, or r/, are nonideal in 
which deviations from extreme value distributions should be observed. 

A comparison of the results with several known model systems is shown 
in Table I for T< T~. Where differences or qualifications occur, they are 
shown in parentheses. 
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